The tumour suppressor CYLD regulates the p53 DNA damage response
نویسندگان
چکیده
The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD.
منابع مشابه
The Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملAssociation of Tissue Selenium Level and p53 Expression in Breast Cancer
Background and Objective: Breast cancer is the most commonly diagnosed cancer in women worldwide, which alone accounts for 30% of all new cancer cases in women. The development of cancer is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of stimuli such as Oxidative stress that is known to cause DNA damag...
متن کاملAnother fork in the road--life or death decisions by the tumour suppressor p53.
In response to cellular stress signals, the tumour suppressor p53 accumulates and triggers a host of antineoplastic responses. For instance, DNA damage activates two main p53-dependent responses: cell cycle arrest and attendant DNA repair or apoptosis (cell death). It is broadly accepted that, in response to DNA damage, the function of p53 as a sequence-specific transcription factor is crucial ...
متن کاملThe tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination.
NF-kappaB transcription factors have key roles in inflammation, immune response, oncogenesis and protection against apoptosis. In most cells, these factors are kept inactive in the cytoplasm through association with IkappaB inhibitors. After stimulation by various reagents, IkappaB is phosphorylated by the IkappaB kinase (IKK) complex and degraded by the proteasome, allowing NF-kappaB to transl...
متن کاملStra13 is induced by genotoxic stress and regulates ionizing-radiation-induced apoptosis.
In response to a number of genotoxic stimuli that induce DNA damage in cells, the tumour suppressor p53 is activated resulting in cell cycle arrest or apoptosis. In this study, we have identified stimulated with retinoic acid 13 (Stra13), a basic helix-loop-helix transcription factor, as a regulator of ionizing-radiation-induced apoptosis. We show that Stra13 is induced in response to several D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016